刊名: 教师教育研究
主办: 北京师范大学;华东师范大学;高等学校教资培训交流北京中心
周期: 月刊
出版地:北京市
语种: 中文;
开本: 大16开
ISSN: 1672-5905
CN: 11-5147/G4
邮发代号:2-418
历史沿革:
曾用刊名:高等师范教育研究
期刊荣誉:社科双效期刊;国家新闻出版总署收录;中国期刊网核心源刊;CSSCI 中文社会科学引文索引来源期刊;北京大学《中文核心期刊要目总览》来源期刊;
创刊时间:1989
在小学数学教学中培养学生的思维能力
【作者】 邓涪钦
【机构】 李渡乡第三中心小学
【摘要】【关键词】
【正文】在数学学习中要使学生思维活跃,就要教会学生分析问题的基本方法,这样有利于培养学生的正确思维方式。要学生善于思维,必须重视基础知识和基本技能的学习,没有扎实的双基,思维能力是得不到提高的。如何培养学生的数学思维能力?本文就此一孔之见。
一、抓住关键,理清学生思维。
认知心理学家指出:“学生思维能力的发展是寓于知识发展之中的。”在教学中,对于每一个问题,既要考虑它原有的知识基础,又要考虑为以后学习新知识作铺垫。只有这样,才能更好地激发学生思维,并逐步形成知识脉络。我们教学的关键在于使学生的这种思维脉络清晰化,而理清思维脉络的重点就是抓住思维的起始点和转折点。
1.引导学生思维的起始点。数学知识的脉络是前后衔接、环环紧扣的,并总是按照发生—发展—延伸的自然规律构成每个单元的知识体系。学生获得知识的思维过程也是如此,或从已有的经验开始,或从旧知识引入,这就是思维的开端。从学生思维的起始点入手,把握住思维发展的各个层次逐步深入直至终结。如果这个开端不符合学生的知识水平或思维特点,学生就会感到问题的解决无从下手,其思维脉络就不会在有序的轨道上发展。
例如:在教学“异分母分数相加减”这一内容时,从学生已有知识基础同分母分数相加减入手,使学生明白同分母分数能直接相加减是由于分数单位相同,而异分母分数的分数单位不同,所以要先通分,从而将学生的思维很自然地引到异分母分数相加减的计算方法,为学生扫清了认知上的障碍。
当然,不同知识、不同学生的思维起点不尽相同,但不管起点如何,作为数学教学中的思维训练必须从思维的“发生点”上起步,以旧知识为依托,并通过“迁移”“转化”,使学生的思维流程清晰化、条理化、逻辑化。
2.点拨学生思维的转折点。学生的思维有时会出现“卡壳”的现象,这就是思维的障碍点。此时教学应适时地加以疏导、点拨,促使学生思维转折,并以此为契机促进学生思维发展。例如,甲乙两人共同加工一批零件,计划甲加工的零件个数是乙加工的2/5。实际甲比计划多加工了34个,正好是乙加工零件个数的7/9。这批零件共有多少个? 学生在思考这道题时,虽然能够准确地判断出2/5和7/9这两个分率都是以乙加工的零件个数为标准量的,但是,这两个标准量的数值并不相等,这样,学生的思维出现障碍。教师应及时抓住这个机会,引导学生开拓思路:“甲加工的零件个数是乙的2/5”,这说明甲、乙计划加工零件的个数是几比几?“正好是乙加工零件个数的7/9”又说明甲、乙实际加工零件个数是几比几?这样,就将以乙标准量的分率关系转化为以总个数为标准量的分率关系,直至解答出这道题。在这个过程中,教师引导学生由分数联想到比的过程,实际就是学生思维发生转折的过程。抓住这个转折点,有利于克服学生的思维障碍,有利发散思维的培养。
二、新旧联系,发展学生思维。
数学知识具有严密的逻辑系统。就学生的学习过程来说,某些旧知识是新知识的基础,新知识又是旧知识的引伸和发展,学生的认识活动也总是以已有的旧知识和经验为前提。我每教一点新知识都尽可能复习有关的旧知识,充分利用已有的知识来搭桥铺路,引导学生运用知识迁移规律,在获取新知识的过程中发展思维。如在教加减法各部分的关系时,我先复习了加法中各部分的名称,然后引导学生从35+25=60中得出:60-25=35;60-35=25。通过比较,可以看出后两算式的得数实际上分别是前一个算式中的加数,通过观察、比较,让学生自己总结出求加数的公式:一个加数=和-另一个加数。这样引导学生通过温故知新,将新知识纳入原来的知识系统中,丰富了知识,开阔了视野,思维也得到了发展。
三、重视系统,优化学生思维。
这是把事物或问题作为一个系统从不同的层次或不同的角度去考虑的高级整体思维形式。在高年级除结合综合应用题以外还可编制许多智力训练题来培养学生系统思维能力。如:1 2 3 4 5 6 7 8 9在不改变顺序前提下(即可以将几个相邻的数合在一起成为一个数,但不可以颠倒),在它们之间划加减号,使运算结果等于1OO。象这道题就牵涉到系统思维的训练。教师可引导学生把10 个数看成一个系统,从不同的层次去考虑、第一层次:找100 的最接近数,即89 比100 仅少11。第二个层次:找11 的最接近数,很明显是前面的12。第三个层次:解决多l 的问题。整个程序如下:12+3+4+5-6-7+89=100
四、设计练习,促进学生思维。
培养学生的思维能力同学习计算方法、掌握解题方法一样,也必须通过练习。而且思维与解题过程是密切联系着的。培养思维能力的最有效办法是通过解题的练习来实现。因此设计好练习题就成为能否促进学生思维能力发展的重要一环。一般地说,课本中都安排了一定数量的有助于发展学生思维能力的练习题。但是不一定都能满足教学的需要,而且由于班级的情况不同,课本中的练习题也很难做到完全适应各种情况的需要。因此教学时往往要根据具体情况做一些调整或补充。
五、多种方法,引导学生思维。
学生数感的建立不是一蹴而就的。是在学习过程中体会了解建立起来的。任何一个数学概念都是抽象、概括的结果,教一个数学知识,经常要把它分解为几个组成部分,然后在综合成一个整体。所以,学生在解决数学问题时,就要把面对的问题通过转化、分析、综合、假设等变化成已知数学问题。但是,小学生正处在具体形象思维向抽象,逻辑思维过渡阶段,不能自觉地运用这些思维方法,这就需要教师有意识地组织学生的思维活动,使学生通过数学知识的学习逐步掌握思维方法。例如:在教学“圆柱体侧面积”时,先让学生观察圆柱形的实物,然后引导学生将准备好的圆柱模型侧面剪开(直剪或斜剪),并观察剪后的长方形、平行四边形或正方形的形状和特征。分析他们各个部分与圆柱部分之间的关系,从而概括出圆柱体侧面积公式。
通过这一系列的操作和观察,综合和分析,具体和抽象,思考和概括的过程,不仅使学生理解并掌握了圆柱体侧面积公式,而且也增加了学生操作意识,提高了操作能力,更培养了学生运用对比、综合、分析、抽象和概括的思维方法。
一、抓住关键,理清学生思维。
认知心理学家指出:“学生思维能力的发展是寓于知识发展之中的。”在教学中,对于每一个问题,既要考虑它原有的知识基础,又要考虑为以后学习新知识作铺垫。只有这样,才能更好地激发学生思维,并逐步形成知识脉络。我们教学的关键在于使学生的这种思维脉络清晰化,而理清思维脉络的重点就是抓住思维的起始点和转折点。
1.引导学生思维的起始点。数学知识的脉络是前后衔接、环环紧扣的,并总是按照发生—发展—延伸的自然规律构成每个单元的知识体系。学生获得知识的思维过程也是如此,或从已有的经验开始,或从旧知识引入,这就是思维的开端。从学生思维的起始点入手,把握住思维发展的各个层次逐步深入直至终结。如果这个开端不符合学生的知识水平或思维特点,学生就会感到问题的解决无从下手,其思维脉络就不会在有序的轨道上发展。
例如:在教学“异分母分数相加减”这一内容时,从学生已有知识基础同分母分数相加减入手,使学生明白同分母分数能直接相加减是由于分数单位相同,而异分母分数的分数单位不同,所以要先通分,从而将学生的思维很自然地引到异分母分数相加减的计算方法,为学生扫清了认知上的障碍。
当然,不同知识、不同学生的思维起点不尽相同,但不管起点如何,作为数学教学中的思维训练必须从思维的“发生点”上起步,以旧知识为依托,并通过“迁移”“转化”,使学生的思维流程清晰化、条理化、逻辑化。
2.点拨学生思维的转折点。学生的思维有时会出现“卡壳”的现象,这就是思维的障碍点。此时教学应适时地加以疏导、点拨,促使学生思维转折,并以此为契机促进学生思维发展。例如,甲乙两人共同加工一批零件,计划甲加工的零件个数是乙加工的2/5。实际甲比计划多加工了34个,正好是乙加工零件个数的7/9。这批零件共有多少个? 学生在思考这道题时,虽然能够准确地判断出2/5和7/9这两个分率都是以乙加工的零件个数为标准量的,但是,这两个标准量的数值并不相等,这样,学生的思维出现障碍。教师应及时抓住这个机会,引导学生开拓思路:“甲加工的零件个数是乙的2/5”,这说明甲、乙计划加工零件的个数是几比几?“正好是乙加工零件个数的7/9”又说明甲、乙实际加工零件个数是几比几?这样,就将以乙标准量的分率关系转化为以总个数为标准量的分率关系,直至解答出这道题。在这个过程中,教师引导学生由分数联想到比的过程,实际就是学生思维发生转折的过程。抓住这个转折点,有利于克服学生的思维障碍,有利发散思维的培养。
二、新旧联系,发展学生思维。
数学知识具有严密的逻辑系统。就学生的学习过程来说,某些旧知识是新知识的基础,新知识又是旧知识的引伸和发展,学生的认识活动也总是以已有的旧知识和经验为前提。我每教一点新知识都尽可能复习有关的旧知识,充分利用已有的知识来搭桥铺路,引导学生运用知识迁移规律,在获取新知识的过程中发展思维。如在教加减法各部分的关系时,我先复习了加法中各部分的名称,然后引导学生从35+25=60中得出:60-25=35;60-35=25。通过比较,可以看出后两算式的得数实际上分别是前一个算式中的加数,通过观察、比较,让学生自己总结出求加数的公式:一个加数=和-另一个加数。这样引导学生通过温故知新,将新知识纳入原来的知识系统中,丰富了知识,开阔了视野,思维也得到了发展。
三、重视系统,优化学生思维。
这是把事物或问题作为一个系统从不同的层次或不同的角度去考虑的高级整体思维形式。在高年级除结合综合应用题以外还可编制许多智力训练题来培养学生系统思维能力。如:1 2 3 4 5 6 7 8 9在不改变顺序前提下(即可以将几个相邻的数合在一起成为一个数,但不可以颠倒),在它们之间划加减号,使运算结果等于1OO。象这道题就牵涉到系统思维的训练。教师可引导学生把10 个数看成一个系统,从不同的层次去考虑、第一层次:找100 的最接近数,即89 比100 仅少11。第二个层次:找11 的最接近数,很明显是前面的12。第三个层次:解决多l 的问题。整个程序如下:12+3+4+5-6-7+89=100
四、设计练习,促进学生思维。
培养学生的思维能力同学习计算方法、掌握解题方法一样,也必须通过练习。而且思维与解题过程是密切联系着的。培养思维能力的最有效办法是通过解题的练习来实现。因此设计好练习题就成为能否促进学生思维能力发展的重要一环。一般地说,课本中都安排了一定数量的有助于发展学生思维能力的练习题。但是不一定都能满足教学的需要,而且由于班级的情况不同,课本中的练习题也很难做到完全适应各种情况的需要。因此教学时往往要根据具体情况做一些调整或补充。
五、多种方法,引导学生思维。
学生数感的建立不是一蹴而就的。是在学习过程中体会了解建立起来的。任何一个数学概念都是抽象、概括的结果,教一个数学知识,经常要把它分解为几个组成部分,然后在综合成一个整体。所以,学生在解决数学问题时,就要把面对的问题通过转化、分析、综合、假设等变化成已知数学问题。但是,小学生正处在具体形象思维向抽象,逻辑思维过渡阶段,不能自觉地运用这些思维方法,这就需要教师有意识地组织学生的思维活动,使学生通过数学知识的学习逐步掌握思维方法。例如:在教学“圆柱体侧面积”时,先让学生观察圆柱形的实物,然后引导学生将准备好的圆柱模型侧面剪开(直剪或斜剪),并观察剪后的长方形、平行四边形或正方形的形状和特征。分析他们各个部分与圆柱部分之间的关系,从而概括出圆柱体侧面积公式。
通过这一系列的操作和观察,综合和分析,具体和抽象,思考和概括的过程,不仅使学生理解并掌握了圆柱体侧面积公式,而且也增加了学生操作意识,提高了操作能力,更培养了学生运用对比、综合、分析、抽象和概括的思维方法。